

Board Paper of Class 12-Science Term-I 2021 Math Delhi(Set 4)

Total Time: 90

Total Marks: 40.0

Section A

Q.No.1: Differential of $\log \left[\log \left(\log x^5 \right) \right]$ w.r.t x is

Marks:[1.00]

Q.No.2: The number of all possible matrices of order 2 × 3 with each entry 1 or 2 is (a) 16

- (b) 6
- (c) 64
- (d) 24

Marks:[1.00]

Marks:[1.00]

Q.No.3: A function $f : \mathbb{R} \to \mathbb{R}$ is defined as $f(x) = x^3 + 1$. Then the function has

- (a) no minimum value
- (b) no maximum value
- (c) both maximum and minimum values
- (d) neither maximum value nor minimum value

Q.No.4: If sin
$$y = x \cos(a + y)$$
, then $\frac{dx}{dy}$ is

(a)
$$\frac{\cos a}{\cos^2 (a+y)}$$

(b)
$$\frac{-\cos a}{\cos^2 (a+y)}$$

(c)
$$\frac{\cos a}{\sin^2 y}$$

(d)
$$\frac{-\cos a}{\sin^2 y}$$

Marks:[1.00]

Q.No.5: The points on the curve $rac{x^2}{9}+rac{y^2}{25}=1,$ where tangent is parallel to x-axis are (a) $(\pm 5, 0)$ (b) $(0, \pm 5)$ (c) $(0, \pm 3)$ (d) $(\pm 3, 0)$ Marks:[1.00]

Q.No.6: Three points P(2x, x + 3), Q(0, x) and R(x + 3, x + 6) are collinear, then x is equal to

- (a) 0
- (b) 2
- (c) 3
- (d) 1

Marks:[1.00]

Q.No.7: The principal value of $\cos^{-1}\left(\frac{1}{2}\right) + \sin^{-1}\left(-\frac{1}{\sqrt{2}}\right)$ is

- (a) $\frac{\pi}{12}$ (b) $\frac{\pi}{3}$
- (c) π (d) $\frac{\pi}{6}$

Q.No.8: If
$$(x^2 + y^2)^2 = xy$$
, then $\frac{dy}{dx}$ is
(a) $\frac{y+4x(x^2+y^2)}{4y(x^2+y^2)-x}$
(b) $\frac{y-4x(x^2+y^2)}{x+4(x^2+y^2)}$
(c) $\frac{y-4x(x^2+y^2)}{4y(x^2+y^2)-x}$
(d) $\frac{4y(x^2+y^2)-x}{y-4x(x^2+y^2)}$

Q.No.9: If a matrix A is both symmetric and skew symmetric, then A is necessarily a

(a) Diagonal matrix

(b) Zero square matrix

(c) Square matrix

(d) Identity matrix

Marks:[1.00]

Q.No.10: Let set $X = \{1, 2, 3\}$ and a relation R is defined in X as : $R = \{(1, 3), (2, 2), (3, 2)\}$, then minimum ordered pairs which should be added in relation R to make it reflexive and symmetric are

(a) $\{(1, 1), (2, 3), (1, 2)\}$

(b) {(3, 3), (3, 1), (1, 2)} (c) {(1, 1), (3, 3), (3, 1), (2, 3)}

(d) {(1, 1), (3, 3), (3, 1), (1, 2)}

Marks:[1.00]

Q.No.11: A Linear Programming Problem is as follows : Minimise z = 2x + ysubject to the constraints $x \ge 3, x \le 9, y \ge 0$ $x - y \ge 0, x + y \le 14$

The feasible region has

(a) 5 corner points including (0, 0) and (9, 5)

(b) 5 corner points including (7, 7) and (3, 3)

- (c) 5 corner points including (14, 0) and (9, 0)
- (d) 5 corner points including (3, 6) and (9, 5)

Marks:[1.00]

Q.No.12: The function $f(x) = \begin{cases} rac{e^{3x} - e^{-5x}}{x}, & ext{if } x \neq 0 \\ k, & ext{if } x = 0 \end{cases}$ is continuous at x = 0for the value of k, as (a) 3 (b) 5 (c) 2 (d) 8 Marks:[1.00] **Q.No.13:** If C_{ij} denotes the cofactor of element p_{ij} of the matrix $P = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & 2 & 4 \end{bmatrix}$, then the value of C₃₁ · C₂₃ is (a) 5 (b) 24 (c) -24 Marks:[1.00] (d) -5 **Q.No.14:** The function $y = x^2 e^{-x}$ is decreasing in the interval (a) (0, 2) (b) (2, ∞) (c) (−∞, 0) (d) $(-\infty, 0) \cup (2, \infty)$ Marks:[1.00]

Q.No.15: If $R = \{(x, y); x, y \in Z, x^2 + y^2 \le 4\}$ is a relation in set Z, then domain of R is (a) $\{0, 1, 2\}$ (b) $\{-2, -1, 0, 1, 2\}$ (c) $\{0, -1, -2\}$ (d) $\{-1, 0, 1\}$ **Marks:[1.00]**

Q.No.16: The system of linear equations 5x + ky = 5 3x + 3y = 5will be consistent if (a) $k \neq -3$ (b) k = -5 (c) k = 5(d) $k \neq 5$

Q.No.17: The equation of the tangent to the curve $y (1 + x^2) = 2 - x$, where it crosses the x-axis is (a) x - 5y = 2(b) 5x - y = 2(c) x + 5y = 2(d) 5x + y = 2Marks:[1.00] **Q.No.18:** If $\begin{bmatrix} 3c+6 & a-d \\ a+d & 2-3b \end{bmatrix} = \begin{bmatrix} 12 & 2 \\ -8 & -4 \end{bmatrix}$ are equal, then value of ab - cdis (a) 4 (b) 16 (c) -4 (d) -16 Marks:[1.00] **Q.No.19:** The principal value of $\tan^{-1}\left(\tan\frac{9\pi}{8}\right)$ is (a) $\frac{\pi}{8}$ (b) $\frac{3\pi}{8}$ (c) $-\frac{\pi}{8}$ (d) $-\frac{3\pi}{8}$ Marks:[1.00] **Q.No.20:** For two matrices $P = \begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{bmatrix}$ and $Q^T = \begin{bmatrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix} P - Q$ is (a) $\begin{bmatrix} 2 & 0 \\ -3 & 0 \\ 0 & -3 \end{bmatrix}$ (b) $\begin{bmatrix} 4 & 3 \\ -3 & 0 \\ \end{bmatrix}$

Marks:[1.00]

Section B

Q.No.21: The function $f(x) = 2x^3 - 15x^2 + 36x + 6$ is increasing in the interval (a) $(-\infty, 2) \cup (3, \infty)$ (b) $(-\infty, 2)$ (c) $(-\infty, 2] \cup [3, \infty)$ (d) $[3, \infty)$ **Marks:[1.00]**

Q.No.22: If $x = 2 \cos\theta - \cos 2\theta$ and $y = 2 \sin\theta - 2\theta$, then $\frac{dy}{dx}$ is

- (a) $\frac{\cos\theta + \cos 2\theta}{\sin\theta \sin 2\theta}$
- (b) $\frac{\cos\theta \cos 2\theta}{\sin 2\theta \sin\theta}$
- (c) $\frac{\cos\theta \cos 2\theta}{\sin\theta \sin 2\theta}$
- (d) $\frac{\cos 2\theta \cos \theta}{\sin 2\theta + \sin \theta}$

Marks:[1.00]

Q.No.23: What is the domain of the function $\cos^{-1} (2x - 3)$? (a) [-1, 1] (b) (1, 2) (c) (-1, 1) (d) [1, 2]

Marks:[1.00]

Q.No.24: A matrix $A = [a_{ij}]_{3 \times 3}$ is defined by $a_{ij} = \begin{cases} 2i + 3j, & i < j \\ 5, & i = j \\ 3i - 2j, & i > j \end{cases}$ The number of elements in A which are more than 5, is (a) 3 (b) 4 (c) 5 (d) 6

Q.No.25: If a function f defined by $f(x) = \begin{cases} \frac{k \cos x}{\pi - 2x}, & \text{if } x \neq \frac{\pi}{2} \\ 3, & \text{if } x = \frac{\pi}{2} \end{cases}$ is continuous at $x = \frac{\pi}{2}$, then the value of k is (a) 2 (b) 3 (c) 6 (d) -6 Marks:[1.00] **Q.No.26:** For the matrix $X = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$, $(X^2 - X)$ is (a) 2 I (b) 3 I (c) I (a) 5 I Marks:[1.00] **Q.No.27:** Let X = { x^2 : $x \in \mathbb{N}$ } and the function $f : \mathbb{N} \to X$ is defined by f(x) = x^2 , $x \in \mathbf{N}$. Then this function is (a) injective only (b) not bijective (c) surjective only Marks:[1.00] (d) bijective

Q.No.28: The corner points of the feasible region for a Linear Programming problem are P(0, 5), Q(1, 5), R(4, 2) and S(12, 0). The minimum value of the objective function Z = 2x + 5y is at the point

- (a) P
- (b) Q
- (c) R
- (d) S

Page 8 of 17

Q.No.34: The principal value of
$$\left[\tan^{-1}\sqrt{3} - \cot^{-1}\left(-\sqrt{3}\right)\right]$$
 is
(a) π
(b) $-\frac{\pi}{2}$
(c) 0
(d) $2\sqrt{3}$
Marks:[1.00]
Q.No.35: The maximum value of $\left(\frac{1}{x}\right)^x$ is
(a) $e^{\frac{1}{x}}$
(b) e
(c) $\left(\frac{1}{e}\right)^{\frac{1}{x}}$
(d) e^e
Marks:[1.00]
Q.No.36: Let matrix X = $[x_{ij}]$ is given by X = $\begin{bmatrix} 1 & -1 & 2\\ 3 & 4 & -5\\ 2 & -1 & 3 \end{bmatrix}$. Then the
matrix Y = $[m_{ij}]$, where m_{ij} = Minor of x_{ij} , is
(a) X = $\begin{bmatrix} 7 & -5 & -3\\ 19 & 1 & -11\\ -11 & 1 & 7\\ 19 & 1 & -11\\ -3 & 11 & 7\\ -5 & -1 & -1\\ \end{bmatrix}$
(b) X = $\begin{bmatrix} 7 & 19 & -11\\ 5 & -1 & -1\\ 3 & 11 & 7\\ -5 & -1 & -1\\ -3 & -11 & 7\\ \end{bmatrix}$
(d) X = $\begin{bmatrix} 7 & 19 & -11\\ -1 & -1 & 1\\ -3 & -11 & 7\\ \end{bmatrix}$

Q.No.37: A function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = 2 + x^2$ is (a) not one-one (b) one-one

Q.No.38: A Linear Programming Problem is as follows: Maximise / Minimise objective function Z = 2x - y + 5Subject to the constraints $3x + 4y \leq 60$ $x + 3y \leq 30$ $x \ge 0, y \ge 0$ If the corner points of the feasible region are A (0, 10), B(12, 6), C(20, 0) and O(0, 0), then which of the following is true? (a) Maximum value of Z is 40 (b) Minimum value of Z is - 5 (c) Difference of maximum and minimum values of Z is 35 (d) At two corner points, value of Z are equal Marks:[1.00] 2 3 \boldsymbol{x} **Q.No.39:** If *x* = -4 is a root of x 1= 0, then the sum of the other two 1 3 $\mathbf{2}$ xroots is (a) 4 (b) -3 (c) 2 (d) 5 Marks:[1.00] **Q.No.40:** The absolute maximum value of the function $f(x) = 4x - \frac{1}{2}x^2$ in the interval $\left|-2,\frac{9}{2}\right|$ is (a) 8 (b) 9 (c) 6 (d) 10 Marks:[1.00]

Section C

Q.No.41: In a sphere of radius r, a right circular cone of height h having maximum curved surface area is inscribed. The expression for the square of curved surface of cone is (a) $2\pi^2 rh (2rh + h^2)$ (b) $\pi^2 hr (2rh + h^2)$ (c) $2\pi^2 r (2rh^2 - h^3)$ (d) $2\pi^2 r^2 (2rh - h^2)$

Q.No.42: The corner points of the feasible region determined by a set of constrains (linear inequalities) are P(0, 5), Q(3, 5), R(5, 0) and S(4, 1) and the objective function is Z = ax + 2by where a, b > 0. The condition on a and b such that the maximum Z occurs at Q and S is (a) a - 5b = 0(b) a - 3b = 0(c) a - 2b = 0(d) a - 8b = 0**Marks:[1.00]**

Q.No.43: If curves $y^2 = 4x$ and xy = c cut at right angles, then the value of c is (a) $4\sqrt{2}$

- (b) 8
- (c) $2\sqrt{2}$
- (d) $-4\sqrt{2}$

Marks:[1.00]

Q.No.45: For an L.P.P. the objective function is Z = 4x + 3y, and the feasible region determined by a set of constraints (linear inequations) is shown in the graph.

Which one of the following statements is true ?(a) Maximum value of Z is at R.(b) Maximum value of Z is at Q.

Q.No.46:

In a residential society comprising of 100 houses, there were 60 children between the ages of 10-15 years. They were inspired by their teachers to start composting to ensure that biodegradable waste is recycled. For this purpose, instead of each child doing it for only his/her house, children convinced the Residents welfare association to do it as a society initiative. For this they identified a square area in the local park. Local authorities charged amount of ₹50 per square metre for space so that there is no misuse of the space and Resident welfare association takes it seriously. Association hired a labourer for digging out 250 m³ and he charged ₹400 × (depth)². Association will like to have minimum cost.

Based on this information, answer the any 4 of the following questions.

Let side of square plot is x m and its depth is h metres, then cost c for the pit is (a) $\frac{50}{h} + 400 h^2$ (b) $\frac{12500}{h} + 400 h^2$

$$\begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} h \\ 250 \end{pmatrix} \begin{pmatrix} h \\ 1 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix}$$

- (c) $\frac{250}{h} + h^2$ (d) $\frac{250}{h} + 400 h^2$

Q.No.47:

In a residential society comprising of 100 houses, there were 60 children between the ages of 10-15 years. They were inspired by their teachers to start composting to ensure that biodegradable waste is recycled. For this purpose, instead of each child doing it for only his/her house, children convinced the Residents welfare association to do it as a society initiative. For this they identified a square area in the local park. Local authorities charged amount of ₹50 per square metre for space so that there is no misuse of the space and Resident welfare association takes it seriously. Association hired a labourer for digging out 250 m³ and he charged ₹400 × (depth)². Association will like to have minimum cost.

Based on this information, answer the any 4 of the following questions. Value of h (in m) for which $\frac{dc}{dh} = 0$ is

- (a) 1.5
- (b) 2
- (c) 2.5
- (d) 3

Q.No.48:

In a residential society comprising of 100 houses, there were 60 children between the ages of 10-15 years. They were inspired by their teachers to start composting to ensure that biodegradable waste is recycled. For this purpose, instead of each child doing it for only his/her house, children convinced the Residents welfare association to do it as a society initiative. For this they identified a square area in the local park. Local authorities charged amount of ₹50 per square metre for space so that there is no misuse of the space and Resident welfare association takes it seriously. Association hired a labourer for digging out 250 m³ and he charged $\gtrless 400 \times (depth)^2$. Association will like to have minimum cost.

Based on this information, answer the any 4 of the following questions.

 $rac{d^2c}{dh^2}$ is given by 25000

(a)
$$\frac{23000}{h^3} + 800$$

- (b) $\frac{500}{h^3} + 800$ (c) $\frac{100}{h^3} + 800$ (b) $\frac{500}{h^3} + 2$

Q.No.49:

In a residential society comprising of 100 houses, there were 60 children between the ages of 10-15 years. They were inspired by their teachers to start composting to ensure that biodegradable waste is recycled. For this purpose, instead of each child doing it for only his/her house, children convinced the Residents welfare association to do it as a society initiative. For this they identified a square area in the local park. Local authorities charged amount of ₹50 per square metre for space so that there is no misuse of the space and Resident welfare association takes it seriously. Association hired a labourer for digging out 250 m³ and he charged ₹400 × (depth)². Association will like to have minimum cost.

Based on this information, answer the any 4 of the following questions. Value of x (in m) for minimum cost is

- (a) 5
- (b) $10\sqrt{\frac{5}{3}}$
- (c) $5\sqrt{5}$
- (d) 10

Q.No.50:

In a residential society comprising of 100 houses, there were 60 children between the ages of 10-15 years. They were inspired by their teachers to start composting to ensure that biodegradable waste is recycled. For this purpose, instead of each child doing it for only his/her house, children convinced the Residents welfare association to do it as a society initiative. For this they identified a square area in the local park. Local authorities charged amount of ₹50 per square metre for space so that there is no misuse of the space and Resident welfare association takes it seriously. Association hired a labourer for digging out 250 m³ and he charged ₹400 × (depth)². Association will like to have minimum cost.

Based on this information, answer the any 4 of the following questions. Total minimum cost of digging the pit (in ₹) is

- (a) 4,100
- (b) 7,500
- (c) 7,850
- (d) 3,220